Understanding the concept of the Limit of a Real Function
in different academic stages of higher education
DOI:
https://doi.org/10.23882/rmd.24236Keywords:
Limit, understanding, APOE theory, higher educationAbstract
In this qualitative study with an interpretive approach, the understanding of the concept of the limit of a real-variable function was analyzed in five students from the Faculty of Physical and Mathematical Sciences at the Benemérita Universidad Autónoma de Puebla, who were at different stages of their undergraduate and graduate programs in mathematical sciences. The design and analysis of the activities carried out by the participants are framed within the APOS theory and the Theory of Semiotic Representations. The purpose was to explore how the understanding of the limit of a function change throughout the students' mathematical education from the perspective of APOS theory. The analysis also considered different semiotic registers and identified difficulties that might persist among students during their mathematical training. The methodology of this research was based on the APOS theory cycle, which consists of three components: theoretical analysis, the design and application of questionnaires, and the analysis and verification of data. The analysis of the results indicates that the doctoral student has constructed the Object of the limit of a real-variable function, performing all the requested semiotic transformations in the given registers using formal and precise language. Meanwhile, the master's and undergraduate students showed evidence of a Process conception of the limit of a function under construction and had difficulties performing some treatments in the algebraic register.
References
Blázquez, S. y Ortega, T. (2001). Los sistemas de representación en la enseñanza del límite. Revista Latinoamericana de Investigación en Matemática Educativa RELIME, 4(3), 219-236.
Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., y Vidakovic, D. (1996). Understanding the limit concept: Beginning with a coordinated process scheme. Journal of Mathematical Behavior, 15(2), 167-192.
Dubinsky, E. (1991). Reflective Abstraction in Advanced Mathematical Thinking. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 95–123). Dordrecht: Kluwer.
Duval, R. (1993). Registres de représentations sémiotique et fonctionnement cognitif de la pensée, Annales de Didactique et de Sciences Cognitives, IREM de Strasbourg, Francia, 5, 37-65. https://shorturl.at/JBOqT
Fernández, C., Sánchez, G., Moreno, M. y Callejo L. (2018). La coordinación de las aproximaciones en la comprensión del concepto de límite cuando los estudiantes para profesor anticipan respuestas de estudiantes. Enseñanza de las ciencias: revista de investigación y experiencias didácticas, 36(1), 143-62. https://raco.cat/index.php/Ensenanza/article/view/335278
Hernández Rebollar, L. A., Trigueros Gaisman, M., Ruiz Estrada, H., y Juárez Ruiz, E. (2023). La concepción dinámica del límite de una función desde APOE y los registros semióticos. Enseñanza de las Ciencias, 41(2), 117–135. https://doi.org/10.5565/rev/ensciencias.5796
Medina M., A. C. (2001). Concepciones Históricas Asociadas Al Concepto De Límite E Implicaciones Didácticas. TED: Tecné, Episteme y Didaxis, 9. https://doi.org/10.17227/ted.num9-5622
Molfino, V y Buendía G. (2010). El límite de funciones en la escuela: un análisis de institucionalización. Revista Electrónica de Investigación en Educación en Ciencias, 5(1), 27-4. https://www.redalyc.org/articulo.oa?id=273319425002
Morante, J. (2020). Una secuencia didáctica para la construcción de la definición formal del límite de una función basada en teoría APOE (Tesis de maestría). Benemérita Universidad Autónoma de Puebla, Puebla.
Pons, J. (2014). Análisis de la comprensión en estudiantes de Bachillerato del concepto de límite de una función en un punto (Tesis de Doctorado) Universidad de Alicante, España. http://hdl.handle.net/10045/45713
Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connecting theoretical approaches: First steps towards a conceptual framework. ZDM, 40, 165-178.
Swinyard, C. y Larsen, S. (2012). Coming to Understand the Formal Definition of Limit: Insights Gained From Engaging Students in Reinvention. Journal for Research in Mathematics Education, 43(4), 465. https://doi.org/10.5951/jresematheduc.43.4.0465
Trigueros, M. y Oktaç, A. (2019). Task Design in APOS Theory. Avances de Investigación en Educación Matemática, 15, 43-55.
Usman, Juniati, D., Siswono y T. Y. E. (2017). Differences conception prospective students teacher about limit of function based gender. AIP Conference Proceedings, 1867(1–7). https://doi.org/10.1063/1.4994406
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 America Guadalupe Analco Panohaya, Lidia Aurora Hernández Rebollar
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.